Prepared by: Ding Hongfei

Introduction

The chip communication protocol is now provided. This manual has marked the meanings of the internal registers of the chip, which facilitates customers to directly refer to them.

1. Programming guide

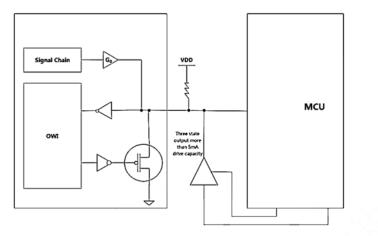


Figure 1 Schematic diagram of the OWI hardware interface

Power on and enter the window period of OWI (One-Wire Interface)

The GSA301 provides current-limiting output to the Vout pin for the first 20/100ms window after the end of the internal POR (Power On Reset) and allows the OWI programming interface to be activated by external circuits (this window can be programmed to close permanently, It is recommended that customers choose whether to turn off according to their own application environment).GSA301 needs power supply coordination to enter the communication. *Note1: In this process, it is recommended that the customer use a three-state output gate with an output capacity of more than 5mA to force the Vout signal to the digital level of '0' or '1' to enable the OWI interface of the GSA301 to be activated.

■ Temporary exit of OWI communication

During the module level calibration of the current sensor, the customer can write any value to the 0x20 register to temporarily exit the OWI interface communication and restore the Go current-limiting output (current limiting to 1mA). After a waiting period(the length of which is determined by the values of the two registers 0x21 and 0x22), the GSA301 will automatically re-enter the OWI communication mode and turn off the Go output.

■ Permanent shutdown of OWI communication

In most application scenarios, the customer does not want the chip to enter the OWI mode after the factory calibration and burning NVM. If there is such a need, the customer can burn the NVM address 0x30 register value bit0 set to 1, so that after the next power-on there will be no more 20/100ms OWI window period, OWI programming interface is permanently closed. After the OWI communication is permanently turned off, the GSA301 directly outputs the analog semaphore normally 1ms after powering on the POR.

MS-AN-24006

Data: 2024.12.16

MS-AN-24006

2. Register Description

Debugging and calibration register area

The debugging and calibration register area of GSA301 is mainly used for customers to do system calibration, debugging and control when burning NVM. The data in the debug and calibration register area will not be saved after power failure. The address space of the register area is from 0x00 to 0x12.

	Table 1 Deta	ils of GSA301 deb	bug and calibrate register area address			
Address	write		Features	Default	0x0A	RW
0x00			Write 0x24 to this register, software reset chip	0x00	UXUA	IX W
0x01~0x05	NA	NA	NA	NA		
0x06	R	TADC_H	12-bit TADC current conversion value data 4 bits higher (Bit7~4 are all zeros)	0x00		
0x08	RW	ZeroDAC_H	14 bit zero bias fine-tune register high 6 bits with calibration mode not enabled, read only, the value is the value of the current ZeroDAC control		0x0B	RW
			immediately changes the ZeroDAC		0x0C~0x0F	NA
			control word and acts as an output.		0x10	RW

inly used for customers to do ata in the debug and calibration f the register area is from 0x00		0x09	RW	ZeroDAC_L	14 bit zero bias fine tune register 8 bits lower Calibration mode not enabled, read only, value is the value of the control word of the current ZeroDAC When calibrating mode is enabled (see Register 0x10), writing this register	0x00
					immediately changes the ZeroDAC control word and acts as an output.	
area address					14 bit gain fine-tuned register High 6 bits When calibrating mode is not enabled, read only, the value is the	
es ster, software	Default 0x00	0x0A	RW	GainDAC_H	value of the current GainDAC control word When calibrating mode is enabled (see register 0x10), writing this register	0x00
· 1	NA				immediately changes the GainDAC control word and acts as an output.	
onversion value 7~4 are all zeros)	0x00				14 bit gain fine-tuned register Low 8	
ne register high mode not value is the croDAC control 0x00 e is enabled (see g this register		0x0B	RW	GainDAC_L	bits When calibrating mode is not enabled, read only, the value is the value of the current GainDAC control word When calibrating mode is enabled	0x00
					(see register 0x10), writing this register immediately changes the GainDAC control word and is used for output.	
he ZeroDAC		0x0C~0x0F	NA	NA	NA	NA
as an output.		0x10	RW	Calib_Mode	Bit0: Calibration mode enabled	0x00

			• Set 0- Without using calibration	
			mode, the value of register 0x08 to	
			0B is the GainDAC and ZeroDAC	
			values written to the response	
			register after calibration.	
			• Set 1- activates calibration mode,	
			allowing registers 0x08~0B to be	
			written.	
			Bit1:Blow_Start	
			• Set 1- start burn write NVM	
			(customers need to wait in the	
0x12	RW	Blow_Start	software for some time before	0x00
			doing other read and write	
			operations).	

■ NVM Global Control Variable area

The global control variable area of GSA301 is primarily used to control options that are not relevant for customer and system calibration. In general, this area saves the settings without the need for secondary programming.

Table 2 Details of GSA301 NVM	global control variable area address
Table 2 Details of OSASOT IN VIVI S	giobal control variable alea address

Address	Read and write	Name	Features	Comments
0x30	RW Blow	Sys_Config	 Bit7: MTP_EN set 0: NVM customer calibration parameter area using OTP mode (when OTP mode is used, Bank1 	

	data and corresponding
	Bank2 data are done or
	logical as the actual
	configuration value).
	set 1: NVM customer
	calibration parameter area
	uses MTP mode (When
	using MTP mode, customer
	uses Bit6 of register 0x30 to
	select Bank1 data or a set of
	Bank2 data as the actual
	configuration value).
	Only when set to MTP
	mode can you burn 3 times.
•	Bit6:CONFIG_MTP_SEL
	(works only in MTP mode)
	set 0: ConfigBank1 data,
	Bank1 points to register
	0x40/0x41
	set 1: ConfigBank2 data,
	Bank2 points to register
	0x42/0x43
•	Bit5: Set to 1
•	Bit4~1:
	One programming:
	LUT_TABLE_BANK_SEL
	<3:0> 0001b: use the data in
	LUTBank1 as the power-on
	default values for GainDAC
	and ZeroDAC, as well as the

		 block for fixed output. Secondary programming: LUT_TABLE_BANK_SEL <3:0> 0011b: use the data in LUTBank3 as the power-on default values for GainDAC and ZeroDAC, as well as the block for fixed output. Tertiary programming: LUT_TABLE_BANK_SEL <3:0> 0111b: use the data in LUTBank7 as the power-on default values for GainDAC and ZeroDAC, as well as the block for fixed output. Bit0: OWI_Disable set 0: The OWI interface is not disabled. set 1: The OWI interface is permanently disabled, and there is no 20/100ms window after it is started 	0x32 0x33	RW Blow RW Blow	CSTCTrim1 CSTCTrim1	 (5V power supply, operating temperature is higher than 105°C for use) 0011b: current drive 3mA (5V power supply, operating temperature is lower than 105°C for use) Bit3: VEXC_SEL set 1: 2.5V (3.3V power supply) Bit2: INPUT_SWAP set 0: the input positive and negative are not exchanged. Bit1~0: SPIN_CHIP 10b : enables the self-stabilized zero function. Bit6~0: IEXC_TC1<6:0> 	TC1 values between 0 and 63
0x31 R Bl	sys_comg	 Bit7~4: EXC Config 0000b: current drive 1.5mA (used on 3.3V power supply) 0010b: current drive 2.5mA 					

Matrixsens

■ NVM customer calibration parameter area

The NVM customer calibration parameter area of GSA301 is divided into Block1 and Block2 data pieces.

1) In OTP mode, the two pieces of data backup each other, and the final output value is the calculation result of the corresponding data "or" of Block1 and Block2.

2) In MTP mode, the customer can choose one of the data of Block1 or Block2 as the final

output result. The data for Block1 starts from address 0x40 to 0x41, and the data for Block2

starts from addresses 0x42 to 0x43.

Address	Read and write	Name	Feature	Comments
0x40	RW Blow	GAIN Setting	 Bit7~6: Go gain configuration 00b: 2.4x 01b: 2.8x 10b: 3.2x 11b: 3.6x Bit5~3: G2 gain configuration 000b: 1.182x 001b: 1.4x 010b: 1.667x 011b: 2x 100b: 2.429x 101b: 3x 110b: 3.5x 	MTPBank1

Table 3 Detailed description of GSA301 NVM customer calibration parameter area address

			111b: 4x	
			• Bit2~0: G1 gain configuration	
			000b:1x	
			001b:2x	
			010b:4x	
			011b:8x	
			100b:16x	
			101b:32x	
			110b:64x	
			111b:128x	
			• Bit0: output mode	
			set 0: fixed output, gain does	
			not change with	
			power supply	
			set 1: proportional output,	
			gain changes with	
			power supply	
			• Bit2~1: Vbias/V0 control	
	DW	EXC	00b: Vbias output is 2.5V	
0x41	RW	Config&	01b: Vbias output is 1.65V	MTPBank1
	Blow	Input Option	10b: Vbias output is 0.5V	
			When set to	
			00b/01b/10b, both	
			zero and reference	
			voltage are fixed	
			outputs.	
			11b:Vbias/V0 output	
			1/2VCC When set to	
			11b both zero and	

			reference voltage are					101b:32x	
			proportional outputs.					110b:64x	
			 Bit3~4: Low pass filter 					111b:128x	
			frequency selection					• Bit0: output mode	
			00b: Not recommended					set 0: fixed output, gain does	
			01b: 500kHz					not change with	
			10b: 250kHz					power supply	
			11b: 50kHz					set 1: proportional output,	
			● Bit7~5: NA					gain changes with	
			• Bit7~6: Go gain configuration					power supply	
			00b: 2.4x				EXC Config& Input Option	 Bit2~1: Vbias/V0 control 	
		GAIN Setting	01b: 2.8x					00b: Vbias output is 2.5V	MTP Bank2
			10b: 3.2x					01b: Vbias output is 1.65V	
			11b: 3.6x					10b: Vbias output is 0.5V	
			• Bit5~3: G2 gain configuration					When set to	
			000b: 1.182x		0.42	RW Blow		00b/01b/10b, both	
			001b: 1.4x		0x43			zero and reference	
			010b: 1.667x					voltage are fixed	
0.40	RW		011b: 2x					outputs.	
0x42	Blow		100b: 2.429x	MTPBank2				11b:Vbias/V0 output	
			101b: 3x					1/2VCC When set to	
			110b: 3.5x					11b both zero and	
			111b: 4x					reference voltage are	
			• Bit2~0: G1 gain configuration					proportional outputs.	
			000b:1x					• Bit3~4: Low pass filter	
			001b:2x					frequency selection	
			010b:4x					00b: Not recommended	
			011b:8x					01b: 500kHz	
			100b:16x					10b: 250kHz	

Matrixsens

			11b: 50kHz ● Bit7~5: NA	
		Table 4 GSA	01 3 times programming data storage location	
Address	Read and write	Name	Feature	Comments
0x60 ~ 0x64	RW Blow	Room temperatu point: 12bit temperatu value, 14l ZeroDA control wo 14bit GainDA control wo	$\begin{tabular}{ c c c c c } \hline TADC(3:0) & \hline TADC(3:10) \\ \hline TADC(3:0) & \hline ZeroDAC(9:2) \\ \hline \hline ZeroDAC(1:0) & \hline GainDAC(13:8) \\ \hline \hline I, & \hline GainDAC(7:0) \\ \hline \end{tabular}$	One programming write: LUT - BANK1
0x70 ~ 0x74	RW Blow	Room temperatu point: 12bit temperatu value, 14l ZeroDA0 control wo 14bit GainDA0	TADC<11:4> TADC<3:0> ZeroDAC<13:10> ZeroDAC<9:2> ZeroDAC<13:8> ZeroDAC<1:0> GainDAC<13:8>	Secondary programming write: LUT BANK3

		Room temperature point:			_
		12bit	TA	DC<11:4>	Tertiary
0x85	RW	temperature	TADC<3:0>	$ZeroDAC\langle 13:10\rangle$	- programming:
~	Blow	value, 14bit	Zer	ZeroDAC(9:2)	
0x89	DIOW	ZeroDAC	ZeroDAC<1:0>	GainDAC<13:8>	- write: LUT BANK7
		control word,	Gai	nDAC<7:0>	DAINK/
		14bit			
	\sim	GainDAC			
	~ 17	control word			

Chip read/write timing instructions

a)Read: Enter the calibration mode after communication, issue the read command, and after

about 1ms, the chip Vout foot will output the signal corresponding to the read command;

b)Write: After writing the register value, assign any value to the register 0x20, the chip can

briefly exit the communication, and the Vout foot has a stable output voltage after about 0.1s.

Important Notice and Disclaimer

The product application information and other similar content described in this document may be replaced by updated content. Matrixsens makes no representations or warranties, express or implied, written or oral, statutory or otherwise, regarding such information, including but not limited to representations or warranties regarding its usage, quality, performance, merchantability or fitness for a particular purpose.

This application manual is available for professional technicians to use Matrixsens products for model selection and application. You will assume sole and full responsibility for the following actions: (1) selecting appropriate Matrixsens products for your application; (2) designing, validating and testing your application; (3) ensuring that your application meets the corresponding standards as well as any other safety, security or other requirements. Any changes to this application manual will be made without prior notice. Matrixsens' authorization for your use of this application manual is limited to the relevant applications of Matrixsens products involved in the development resources. Except for this, this application manual shall not be copied or displayed, and no authorization license for the intellectual property rights of other Matrixsens or any third parties will be provided. Matrixsens shall not be responsible for any claims, compensations, costs, losses and liabilities arising from the use of this application manual, and you must compensate for the losses caused thereby to Matrixsens and its representatives.